Regularity of the semigroup associated with some interacting elastic systems

K. Ammari^a

a. University of Monastir, Tunisia, kais.ammari@fsm.rnu.tn

Abstract

In this talk, we examine regularity and stability issues for two damped abstract elastic systems. The damping involves the average velocity and a fractional power θ , with θ in [-1,1], of the principal operator. The matrix operator defining the damping mechanism for the coupled system is degenerate. First, we prove that for θ in $(\frac{1}{2}, 1]$, the underlying semigroup is not analytic, but is differentiable for θ in (0, 1); this is in sharp contrast with known results for a single similarly damped elastic system, where the semigroup is analytic for θ in $[\frac{1}{2}, 1]$; this shows that the degeneracy dominates the dynamics of the interacting systems, preventing analyticity in that range. Next, we show that for θ in $(0, \frac{1}{2}]$, the semigroup is of certain Gevrey classes. Finally, we show that the semigroup decays exponentially for θ in [0, 1], and polynomially for θ in [-1, 0). To prove our results, we use the frequency domain method, which relies on resolvent estimates. Optimality of our resolvent estimates is also established. Two examples of application are provided. This is a joint work with F. Shel and L. Tebou